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On the quantum theory of Brillouin scattering of 
dielectric layered media 

A P Mayert 
Department of Physics, University of California, Irvine, CA 92717, USA 

Received 1 September 1988 

Abstract. The theory of Brillouin scattering of dielectric layered elastic media is formulated 
in a way that also treats the electromagnetic field quantum mechanically. The general 
expression for the cross section obtained by this approach is applied to the investigation 
of shear horizontal modes in the Brillouin spectrum of finite and semi-infinite dielectric 
superlattices. 

1. Introduction 

Since the significant achievements concerning the resolution in light scattering experi- 
ments [ 11, Brillouin scattering has become a particularly useful tool for the investigation 
of longrwavelength acoustic excitations near the surfaces of solid materials as well as in 
layered structures. The dominant coupling mechanisms between these excitations and 
the light are the elasto-optic and the ripple effect. The current theories, which have been 
able to successfully reproduce the experimental data with the elastic, dielectric and 
elasto-optic constants as parameters, are of a semiclassical nature in that they treat the 
elastic excitations quantum mechanically, while the electromagnetic field is treated 
classically. This is sufficient for the interpretation of the Brillouin scattering experiments 
carried out so far, since they have not been concerned with the quantum properties of 
the scattered light. 

The calculations of the Brillouin spectra in these approaches are largely based 
on two different methods of solving Maxwell’s equations to first order in the elastic 
displacement field, the Green function method [2] and the matching method [3]. The 
Green function method requires the knowledge of the Green tensor for the elec- 
tromagnetic field in the absence of elastic displacements. Once this tensor is established, 
the Brillouin spectra are obtained by integration over a product involving this Green 
tensor, the coupling parameters and the displacement-displacement correlation func- 
tion of the elastic medium. In the matching method, one first calculates the zero-order 
fields corresponding to a plane wave impinging on the surface of the medium in the 
absence of elastic deformations. In a second step, the electromagnetic field inside 
the elastic medium induced by the elastic displacements via the elasto-optic effect is 
calculated as an inhomogeneous solution of the Maxwell equations to first order in the 
t Permanent address: Institut fur Theoretische Physik 11, Westfalische Wilhelms-Universitat, D-4400 
Munster, Wilhelm-Klemm-Strasse 10, Federal Republic of Germany. 
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strains. The third step consists in matching a homogeneous solution at the interfaces 
corrugated by the elastic displacements to fulfil the boundary conditions to first order in 
these displacements, which yields the scattered field. The appeal of this method consists 
in its dealing with single waves of the electromagnetic field and directly the normal modes 
of the displacement field, and one has only to solve linear equations for the amplitudes. 
The matching of the first-order solutions at the corrugated interfaces is, however, a step 
that contains some arbitrariness and is not required in the Green function method. 

In 69 2 and 3 the theory of Brillouin scattering of dielectric media is formulated 
quantum mechanically as the scattering of one-photon states, making use of the dipole 
approximation from the very beginning and of the normal modes of the electromagnetic 
field in a layered system. It will be seen that for dielectric layered structures, the quantum 
mechanical treatment of the electromagnetic field does not lead to any new complications 
if compared to the quasi-classical approaches. The formulation given here provides, to 
some extent, a link between the theory of light scattering and the quantum theory for 
the scattering of atoms and electrons in the distorted-wave Born approximation (DWBA) 
(for a review, see [4]). The normal modes of the electromagnetic field in the layered 
structure then correspond to the distorted wave basis set in the latter theories. 

Furthermore, this formulation can serve as a starting point for the interpretation of 
future experiments, in which the quantum statistical properties of the scattered light are 
analysed to gain information about the corresponding properties of the target system. 
This may be of interest, for example, if the target degrees of freedom (in our case, the 
acousticphonons) obey a non-equilibrium distribution created by the coherent excitation 
of certain normal modes of that system. 

The quantum approach provides an expression for the intensity of the scattered light 
of the familiar form, namely the square of the modulus of a matrix element multiplied 
by the spectral function of an elastic mode. As will be demonstrated, the evaluation of 
this formula appears relatively easy since, like the matching method, it only deals with 
single modes, while no matching of first-order solutions is required. 

Since the hermiticity of the Hamiltonian in the dipole approximation requires the 
dielectric constants to be real, the result of our quantum formulation is applicable only 
to those cases where the role of the imaginary parts of the refractive index is negligible. 

A brief discussion about the connection between the quantum treatment and the 
Green function method will be given in § 4. As an illustration, we apply the results of § 2 
to the calculation of the Brillouin scattering cross section for finite dielectricsuperlattices. 
The elastic vibrations in these structures have been subject to theoretical [5 ,6]  and 
experimental investigations, recently also in connection with Brillouin scattering [7-131, 
In 0 5 ,  the normal modes of the electromagnetic and elastic displacement field are 
established, which we will use to discuss some general features of the cross section. 

In 9 6 we give numerical examples for the cross section in the case of crossed 
polarised backscattering from a finite dielectric superlattice on areflecting substrate. This 
scattering geometry is appropriate for the investigation of the elastic modes of shear 
horizontal polarisation in the layered system. The results presented in § 7 refer to a semi- 
infinite superlattice in the special situation in which the light enters the superlattice with 
a finite penetration depth. To our knowledge, a calculation of the Brillouin scattering 
cross section from semi-infinite superlattices with finite momentum transfer parallel to 
the surface has not yet been performed. Also, the appearance of the shear horizontal 
modes in the scattering cross section of finite and infinite superlattices does not seem to 
have been investigated. In the total reflection geometries chosen for the numerical 
examples, the application of our approach, which is general for dielectric materials, 
proves to be particularly easy. 
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2. The Hamiltonian 

To derive the Hamiltonian for the electromagnetic field, one conveniently starts from 
the Lagrange function in the dipole approximation 

L = d3x - E ~  2 ~ , ~ ( x > A , ( x ) A ~ ( x )  - (l/c;)[rotA(x)12) (2.1) i : imp 
which has to be supplemented by the condition 

2 V,{E,@(X)A&)} = 0. (2 * 2) 
LyB 

Here, A denotes the vector potential, co the velocity of the light in a vacuum and ( E , @ )  

the dielectric tensor. In writing these equations, we have used a gauge in which the scalar 
potential vanishes. From now on, the dimensional constant will be absorbed in the 
energy unit. Variation of the Lagrange function with respect to A yields the canonical 
momentum 

W X )  = E E n B ( x > A s ( X >  (2.3) 
B 

and after a Legendre transformation, we obtain the Hamiltonian 

where the Hamiltonian of the pure phonon system, lip, has been added. We now 
decompose this Hamiltonian in an unperturbed part 

H o  = d 3x 4 {~@f(z)II(x) * H ( x )  + (l/ci)[rot A(x)]*} + H ,  (2.5) i 
and a part to which perturbation theory will be applied, 

The dielectric tensor has been split into a part of purely electronic origin E ( ~ ) ,  which for 
simplicity is taken to be isotropic and homogeneous in each layer, 

E ( o ) ( z )  = E j  for z j  < z < (2.7) 
and a contribution (SE,@) ,  which represents the coupling of the light to the elastic 
deformations via the elasto-optic effect and which is itself an operator in the Hilbert 
space of the elastic degrees of freedom. 

~ E , @ ( X )  = E? 2 p $ j , , ~ ( ~ , u , ( x )  + V ~ U ~ ( X ) )  for z j  < Z < Z ~ + ~  (2 * 8) 
I r U  

where pasr, are the Pockels coefficients and u(x)  is the displacement field. The second 
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term in (2.6) represents the ripple effect. We have chosen the z axis to be normal to the 
layers, and zj marks the position of the undeformed interface between the ( j  - 1)th and 
the jth layers. 

In order to diagonalise the electromagnetic part of the unperturbed Hamiltonian Ho,  
we perform a canonical transformation to normal coordinates Q ( A )  and conjugate 
momenta P(A). They are associated with a set of basis functions c(xlA) orthonormal with 
respect to the scalar product 

wherefand g are two vectors of the Hilbert space under consideration?. The basis set 
should contain the incoming states in the spirit of the DWBA. The transformation then 
reads 

h 
(2.10) 

(2.11) 

The functions are now chosen to be the eigenvectors of the operator (z)A, satisfying 
the transversality condition in each layer and the conditions of the continuity ofA11, qofl1 
and rot A at each interface, i.e., they are the solutions of the field equations resulting 
from the Lagrange function (2.1) for a given frequency. In addition, we require periodic 
boundary conditions in the x-y plane. The index A ,  which labels these eigenmodes, can 
then be chosen as 

A = ( k ,  s, t) (2.12) 

where k is the wavevector in vacuum, s denotes the polarisation, and z is an additional 
index that will be specified in § 5. It is then an easy matter to show, that Ho takes the 
form of the Hamiltonian for a set of decoupled oscillators with frequencies 

U?, = kco. (2.13) 

3. The scattered intensity 

The following derivation of the power spectrum of the scattered light largely follows the 
derivation of the cross section for atom and electron scattering of solid surfaces in the 
DWBA [4]. From general quantum mechanical scattering theory [14], the scattered part 
of the outgoing wavefunction is given by 

in terms of the T-operator. The symbol 1 A V )  denotes the product of an eigenstate of the 
pure phonon Hamiltonian with quantum numbers v and a photon state characterised by 
A .  In the following, only one-photon scattering is considered, and for sake of simplicity, 
t One can also work with the usual scalar product after transition to functions c’(x1A) = q) c(x1A). We 
shall pursue this way for the elastic modes, where the same problem arises with the mass densities. 
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we may confine ourselves to one-phonon-states for the incoming and outgoing states. A 
generalisation to superpositions of states with different photon numbers, such as coher- 
ent states, is possible in principle. In view of the first Born approximation that we will 
employ later on, we write 

T(wlo  + w, + iE)/dOv) = H’lAov+) (3 * 2) 
which is still exact. Here, lAov+) is the eigenstate of H o  + H’ ,  into which lAov) develops 
if H‘ is switched on adiabatically. 

The power spectrum of the scattered light may be calculated using the formula 

~ , p ( w )  = (1 dt’ e-lml,s(voutlA,(x, t > ~ p ( x ,  t + t ’ ) ~ v ~ . ~ ) ~ )  (3.3) 

where x is the position of the detector. The time dependence of the field operators in 
(3.3) is governed by the unperturbed Hamiltonian. The additional angular brackets in 
this equation mean that the sum over the final phonon states and the average (in our 
case the thermal average) of the initial phonon states have to be performed. After 
insertion of (2.10) and (3.1) into (3.3), and the introduction of phonon creation and 
annihilation operators in the standard way, we obtain 

4n3 
Z,p(w) = - c. (+”v’A”~H’~A~v+)p,[W~~w~~~]~’~ 

x c,(x~~”)c~(x~X’) e1(wi’-wp)f6(wA, + U,,, - wh - U,) 

x S(wn,, + w v ,  - @Ao - w y ) S ( 0  - col,) 

h h ’ l ” v u ‘  

(3.4) 
where the term resulting from the commutator of the two field operators in (3.3) has 
been dropped. py is the thermal weight of the phonon state with quantum numbers v. 
The perturbation Hamiltonian H’ may now be expanded with respect to phonon normal 
coordinates, 

H’ = c. V(P)B(P). (3.5) 
P 

The index ,U stands for the part Q of the phonon wavevector parallel to the x-y plane and 
a further index J, which labels the different modes with the same Q. The coordinates B 
are connected with the displacement field via 

Throughout this paper, we assume periodic boundary conditions in the x-y plane with 
length of periodicity L.  After replacing o ) , ~  + w,  by wA, + CO,( in the argument of the 
second &function in (3.4) and approximating ] A V + )  by a product state, where the 
phonon part is given by the corresponding eigenstate of H p ,  the sums over v and v ’  may 
be performed by introducing the spectral density function S :  
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which bears the familiar features of the scattered intensity of a projectile at an arbitrary 
system in the first Born approximation in that it contains the spectral density of the 
degrees of freedom probed, twice multiplied with a matrix element of the coupling 
between these degrees of freedom and the projectile. A further simplification can be 
achieved by making use of the wavevector conservation within the x-y plane in the 
matrix elements, which is satisfied for the systems we have in view. On decomposing 

c , (x lks t )  = (1/L) X ’ X E , ( x l k s z )  (3.9) 
we arrive at our final result 

(3.10) 

where 

For harmonic phonons, the spectral density function S is of the form 

SQJ(Q> = 2n{(nQ~ + ~ ) ~ ( Q - - Q J )  + ~ Q J ~ ( Q  + mQJ)> (3.12) 

where nQj are the thermal quantum numbers. In order to obtain the scattering cross 
section, the sum over Q in (3.10) has to be replaced by kinematic factors [3,15] 

(3.13) 

The factor wo instead of w t  in (3.13) results from the fact that the incoming intensity for 
the one-phonon state is proportional to wo. 

We now discuss the functions M .  They consist of a contribution due to the elasto- 
optic and a contribution due to the ripple effect. The first is given by 

where 

(3.14) 

(3.15) 

while the latter is of the form 

x 2 E;(zj3(hz)E,(Zji (kosozo). (3.16) 

D(ksz)  is the amplitude of the plane-wave component of the function c(x1ksz) which 
radiates into the vacuum. To obtain (3.16), one has to argue in the same way as in [2] 

Lr 
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for the Green function method, namely that the field associated with the state IA+) has 
its discontinuities at the corrugated interfaces, while the states ( A )  are associated with 
the functions c,  which are discontinuous at the non-corrugated interfaces. Furthermore, 
we have made use of the relation 

(3.17) 

which follows from the boundary conditions fulfilled by the functions c.  The symbols zj+ 
and zj- mean that thejth interface is approached from above or below. Either the upper 
or the lower set of signs in (3.16) may be chosen. 

E; (Zj? IkSZ)C, (Z+ lkosoto) = 2 ;  (Zj’ / kS t )C. (Zj?  lkos”z0) 

4. Connection with the Green function approach 

The result (3.10), together with (3.14) and (3.16), may also be obtained in a quasi- 
classical approach using the Green tensor [GnP(x, x‘, At)] of the electromagnetic field. 
This is briefly outlined in this section. A shorthand notation is used, in which matrix 
multiplication includes spatial integration. 

In the Green function method, the actual electromagnetic field A ( t )  is calculated 
from the equation 

A ( t )  = A(’ ) ( t )  + j dt’G,(t - t ’ )V( t ’ )A( l ) ( t ’ ) .  (4.1) 

Here, G, is the retarded Green tensor, A(’) is the solution of the field equations in the 
absence of elastic deformations associated with the incoming beam, i.e., 

A(’ ) (x ,  t )  - c(x(A0) (4.2) 
and V contains the coupling via the elasto-optic and ripple effect. The retarded Green 
tensor may now be written in terms of the normal modes of the field as follows: 

(4.3) 

Since the set of functions in the representation (4.3) has to be complete, those optical 
modes that are localised in the layered structure also have to be included. These, 
however, do not contribute to the scattering in lowest order perturbation theory. A( t )  in 
(4.1) can now be regarded as the field, into which the field configuration A(‘) develops, 
if the perturbation is switchedon adiabatically at t -  - w. In the spirit of S-matrix theory, 
the scattered fieldA(S) is obtained from the actual field by switching the perturbation off 
adiabatically employing the relation 

A ( t )  = A(’) ( t )  + 1 dt’ G,(t - t’)V(t’)A(S)(t’) (4.4) 

where G, is the advanced Green tensor, which is given by the RHS of (4.3) with, 
however, the sign in front of iE reversed. Equating the RHS of (4.1) and (4.4) and solving 
for A(‘) yields to lowest order in the perturbation 

A(S) ( t )  = A(’) ( t )  + j dt’ {G,(t - t’) - G,(t - f ’ ) }V( t ’ )A( i ) ( t ’ ) .  (4.5) 

Using the spectral representation (4.3) of the Green functions one may now proceed as 



3964 A P Mayer 

t z  
Vacuum // 

2 

I I 
I I 
I I 
I I 
I I n 

I \  

( a )  

Figure 1. Schematic representation of the normal modes of the electromagnetic field 

in § 3 to calculate the power spectrum of the scattered field. The difference between the 
retarded and the advanced Green functions in (4.5) generates the first two &functions 
in (3.4), and no principal values appear. 

5. Normal modes of the electromagnetic and displacement field 

As an example, we now discuss the situation of a finite dielectric superlattice on a 
substrate, which will be assumed to be also dielectric in the first part and totally reflecting 
in the second part. The functions c(xlA) can be constructed by superposing two plane 
waves in each medium and matching their amplitudes via the boundary conditions at the 
interfaces. 

E(zlA) = A,, (A) eiqOz + A,-(A) e-QZ f o r z > O  

=ATj(A) ei41(z-flD) + AT?(A) e-iql(z-flD) for nD + 1 < 2 < nD 

= A ? ~ ( A )  eiqZ(z-"D) + A??(A) e-iqZ(2-n') 

= A , +  (A) eiqs(z-ND) + A,- (A) e-lqS(z-ND) 

for (n  + 110 < z < n~ + I 
for z < N D  (5.1) 

(5 .2)  

and 

kz =40 k2 = K2 + 420 = E T1 ( K 2  + 4:) = &T1 ( K 2  + 4:) = &il ( K 2  + 4;) .  

In the first case, we distinguish two types of modes (z = a ,  b) ,  shown schematically in 
figure 1. The modes of the first type, which contain the incoming states, do not contain 
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a component which radiates out of the substrate, while the second type has only one 
component in the vacuum. It is most convenient to refer the amplitudes via transfer 
matrices [16] to a reference amplitude, the value of which is determined by the nor- 
malisation. Only the vacuum and substrate parts enter the normalisation integrals 
(analogous to the normalisation of bulk elastic modes in layered media [17]), and it can 
easily be shown that the above modes are normalised, if lAv- I for the modes of type a 
and /As+ /  for the modes of type b are chosen to be [ 2 ~ ] - ~ / ~ .  In the case of a totally 
reflecting substrate, the modes of type b are absent, and IAv+l and lAv-l are equal. 
Without loss of generality, we assume K parallel to the x-axis. For the TE-polarised 
modes, we decompose 

Aj, = EA,, (5.3) 

Ail = [l + qg/k2]-1/2[i T (qi/K)R]Aj,. (5.4) 

and for the TM modes 

One has then only to deal with two-component vectors (Aj+, Ai-) and 2 X 2 matrices: 

The transfer matrices T and matrices M are specified in the Appendix. 
The normal modes of the displacement field are determined in a similar way. Here, 

however, the z-component of the wavevector may be complex, and in the most general 
case, up to six instead of only two components may occur in the decomposition of 
w(z1Q.T) analogous to (5.1). In elastically isotropic materials, the sagittal modes can be 
separated from the shear horizontals, and the amplitude vectors of the first consists of 
four components, while the one for the latter has only two. Like their optic analogues, 
the elastic transfer matrices have the property that each eigenvalue occurs together with 
its inverse. The elastic modes of the system under consideration can be divided into 
three categories. 

(1) Localised modes of the superlattice, which correspond to an eigenvalue of the 
transfer matrix, the modulus of which is not unity and decay both in the superlattice and 
in the substrate. 

(2) Band modes of the superlattice, which correspond to eigenvalues of the transfer 
matrix, which are phase factors. They propagate plane-wave-like in the superlattice and 
decay in the substrate. For sufficiently large numbers of layers, they form continuous 
bands. 

(3) Bulk modes of the substrate, which may show resonances in the superlattice. 
From these properties of the optic and acoustic modes, some general conclusions 

concerning the Brillouin cross section may be drawn. The function M in the expression 
for the scattered intensity (3.10) can be cast into the following form: 
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because after diagonalising the three transfer matrices involved, the integral in (3.14) 
can be converted into an integral over the 'unit cell' of the superlattice and a sum over 
all units, which, like the sum in (3.16), is a geometrical series in the product of the 
eigenvalues of the transfer matrices. The coefficients F also contain the reference 
amplitudes, which in general depend on N .  The function E takes account of the elasto- 
optic contribution from the substrate and the ripple contribution from the vacuum 
interface and partly the substrate interface. If all three eigenvalues occurring in (5.7) are 
phase factors, we may express them as 

A j ( Q J )  = eitD A ( h )  = e@ A(koso) = eiS@ ( 5 . 8 )  
where &QJ), g(h) and fo(k ,po)  are the effective wavenumbers of the acoustic mode and 
the light in the layered structure. The ratio in (5.7) then takes the form 

The modulus square of this expression, which will occur in the formula for the scattered 
intensity, approaches for large N a &function. This result expresses the conservation of 
the effective wavevectors modulo a reciprocal wavevector of the superlattice and gives 
rise to resonances in the spectrum. This has been found by Babiker et a1 [SI and by He 
et a1 [ 121 in the case of longitudinal phonons and normal incidence of the light. It should 
be noted, that unlike in the single interface case, also the ripple scattering contributes 
to this quasi-momentum conservation because of the periodicity of the interfaces. The 
ratio 

(5.10) 

may be regarded asa very rough estimate for the relative importance of the ripple effect 
in comparison to the elasto-optic effect for the peak intensities of the longitudinal 
acoustic band modes for the case of normal incidence. Here, is the average of 
~ p p ( 4 ,  and C; the average longitudinal sound velocity. If the dielectric constants are 
sufficiently different, the ripple contribution can become significant and due to its 
interference with the elasto-optic contribution increase or decrease the peak intensities. 

The behaviour of the cross section is totally different, if one of the three eigenvalues 
A in (5.7) is not a phase factor. This may occur in the following cases. 

(1) The acoustic mode is a localised mode in the superlattice. In this case, the 
spectrum shows a discrete &peak from the spectral density function Sin (3.10). 

(2) The acoustic mode corresponds to a bulk phonon of the substrate with a dis- 
placement field in the superlattice which is largely localised at the vacuum and substrate 
interface. Such modes may show resonances in the continuous part of the Brillouin 
spectrum, which are however of a different origin, e.g. due to an enhancement of E in 
(5.7) because of possible high amplitudes at the substrate and/or vacuum interfaces. 

(3) The incident or scattered light corresponds to a forbidden optical band of the 
superlattice. We shall address this peculiar situation at the end of 0 6. 

6. Shear horizontal modes in a dielectric superlattice on a metallic substrate 

In this section, a numerical example is given for a situation, to which the application of 
the present approach is particularly easy, namely the investigation of shear horizontal 
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acoustic phonons in a finite dielectric superlattice on a metal substrate, which we 
approximate to be totally reflecting for the light. By choosing a geometry in whichK and 
K O  are parallel, the incident light is TE-polarised and only the TM component of the 
scattered light is analysed, we make sure that only the shear horizontal modes will be 
seen in the spectrum. Since these modes do not produce interface ripples, only the elasto- 
optic coupling is effective and the function E in (5.7) vanishes. Explicit expressions for 
Fare  given in the Appendix. 

We now address the calculation of the elastic modes. Shear horizontal modes in 
superlattices have been discussed in detail by Camley et a1 [5]. We will make use of their 
results for the semi-infinite superlattice and extend them to account for the presence of 
the substrate. We assume the films as well as the substrate to be elastically isotropic. The 
parameters entering the calculation are then the bulk shear velocities cj and the densities 
pi of the three materials ( j  = 1,2 ,  s). We then define 

aj = [Q2 - ( Q z / ~ j ) ~ ] ~ / ~  

p .  I = a .  ,PI .e2 I 

(6.1) 

(6.2) 

for a given wavevector Q parallel in the x-y plane. Below the bulk threshold of the 
substrate, the mode frequencies QQJ are the solutions of the equation 

Here, A and A-' are the eigenvalues of the elastic transfer matrix given in the Appendix, 

A = t .t [t* - 1]'@ (6 * 4) 
with 

t = cosh(all) cosh(a sinh(a,l) sinh(a2h) (6.5) 

and the matrix R contains as columns the two eigenvectors. The role of condition 
(6.3) can be regarded as discretising the band modes and shifting the position of (and 
eventually excluding) the localised modes of the semi-infinite superlattice. With increas- 
ing N ,  the bands will be filled by modes with IA 1 = 1. For \A I > 1, we may for large N 
neglect the term with A-N, and the LHS of (6.3) factorises into two terms. The zeros of 
the first correspond to the localised modes of a semi-infinite superlattice discussed by 
Camley etal[5]. The second term equated to zero provides the condition for the existence 
of modes localised at the substrate interface. It can be cast into the form 

+ (P1 - P,) tanh(a1l) = 0. (6 * 6) 
These modes decay into the substrate with the decay constant a, and into the superlattice 
with the effective decay constant 1nIA 1 ,  where A can be expressed as 

A = e -"1'{cOsh(azh) - [ (PSPl+ P W P , < P I +  PSI1 sinh(@,h)). (6.7) 

The normalisation of the shear modes discussed so far is an easy task, if the transfer 
matrix is used. For frequencies above the bulk threshold, i.e., in the continuous part of 
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the spectrum, the normalisation integral involves only the displacement field in the 
substrate [ 171, which is of the form 

} (6.8) u(x)  - e iQ.x  {eigz(z-ND) + e-i[~,(z-ND)+WI 

where q2 = I a,I. The phase shift 2 q ,  which results from the scattering of the shear bulk 
wave at the superlattice, can be calculated from the equation 

If the shear horizontal modes in the substrate continuum are normalised with respect to 
qz, i.e. 

0 

d z  w*(zIQq:) * w(zlQqz) = 6(q: - q 2 )  (6.10) L 
the spectral function in (3.10) gives rise to the density of state factor 

(6.11) 

which becomes singular at the threshold frequency. This singularity is usually com- 
pensated by the matrix element, which is of the form 

(6.12) c l (p l  cos q + ips sin q) + cz(pl cos q - ips sin q) 
with regular coefficients c1 and c2. From (6.9), the phase $ should behave as 

q = * (n/2) + 0 ( a s )  (6.13) 

unless the relation 

(6.14) 

holds, which is the resonance condition for the ‘plate modes’ of the finite superlattice. 
If a solution of (6.14) comes close to the threshold frequency, we therefore expect a peak 
in the spectrum. 

In figure 2, examples of the Brillouin spectra are given for three different values of 
N .  The parameters used are listed in table 1. Since, to our knowledge, experimental 
data for the system considered here are not yet available, we have chosen the elastic 
parameters to be equal to those of Camley et aZ[5], to facilitate a comparison with their 
theoretical results. The dielectric constants and the ratio p$+)/p@ have been given 
arbitrary values in the range of those of semiconductors. The thermal quantum numbers 
in the spectral density function (3.12) are taken in the high-temperature limit. The 
discrete modes are indicated by vertical lines, the lengths of which measure their relative 
intensities. In the case of a substrate with a shear elastic constant lower than those of the 
films, no discrete shear horizontal modes exist, and only a continuous spectrum will be 
measured in the scattering geometry under consideration. Nevertheless, a fair amount 
of information can be extractedfrom the latter due to its remarkable oscillatory structure. 
With increasing N ,  the peaks of these oscillations close to the threshold frequency 
become sharper and higher. This can be understood on the basis of equations (6.9)- 
(6.11). For larger numbers of layers, the number of solutions of (6.9) increases, and 
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Figure2. Brillouin spectra for (a)  2, ( b )  20, (c) 200 
double layers. Angle of incidence 0, = 10". The 
vertical lines represent the discrete modes. Their 
heights correspond to the prefactors of 

Table 1. Parameters used for the numerical calculations. In all Brillouin spectra, the back- 
scattering geometry has been considered. 

Layer Layer 
type 1 type 2 Substrate 

Elastic parameters 
Shear velocities c, [lo3 m s-'1 1.83 2.905 3.0 

Thicknesses [lo-' m] 111 = 1.0 Jhl = O S  p 

Optical parameters 

Mass densities pi ( lo3  kg 8.57 8.92 10.0 

Dielectric constants E, 15.0 10.0 
Pockels coefficients pW 2.0 1.0 
Wavelength of incident light: A. = 5145 x m, c,, = 2.99 x lo* m. 

some of them may come close to the substrate threshold frequency thus giving rise to 
sharp peaks due to the small quantity last in the denominator. 

Figure 3 shows a spectrum calculated with the same parameters as the previous two 
except for the angle of incidence (again, the backscattering geometry is considered). 
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The number of discrete modes has strongly increased. Not all of the 43 modes can be seen 
in the figure, because the intensity decreases considerably as the threshold frequency of 
the substrate is approached. The situation in this case is distinct from that of the previous 
two figures in that both the incident and the scattered light fall into a forbidden optic 
band of the superlattice. This obviously influences the shape of the continuous spectrum. 
Now, the electromagnetic field consists of two parts, one of which decays exponentially 
from the vacuum side, the other from the substrate side into the superlattice. For 
sufficiently many layers, these two components are separated, and the scattering should 
resemble that of a metal, although both dielectric constants are real. For this peculiar 
case of total reflection, it is an easy task to calculate the Brillouin spectrum for a semi- 
infinite dielectric superlattice with our approach, as is demonstrated in § 7. In the 
case of propagating light in the superlattice, the limit N +  cannot be performed 
unambiguously, because the reference amplitudes, from which the amplitudes in the 
different layers are calculated via the transfer matrices, depend on N .  If one has to deal 
with a semi-infinite superlattice, one rather has to require that, e.g., the modes of type 
a in 0 5 are Bloch waves inside the medium propagating from the surface into the 
medium. This condition has been used for the incoming state by He et a1 [12] in their 
application of the matching method. The present approach can be extended to this case. 
For finite but very large N ,  the frequency separation of the elastic band modes can 
become smaller than the experimental resolution, so that a description of these modes 
as a continuous band is suggested, where the sum over the index1 would be replaced by 
an integral. At this stage, the question arises, to what extent the density of states in these 
bands is affected by the boundary condition at the substrate interface. This problem 
requires a special investigation and is not pursued here. 

7. Scattering from a semi-infinite superlattice with light of finite penetration depth 

It has been pointed out by Yeh et a1 [16], that in dielectric superlattices the light 
propagates in the form of Bloch waves and there can be band gaps, i.e., for a given K 
and w ,  the amplitudes decay exponentially with the distance from the surface. In figure 
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Figure 4. Effective wavevector component E in 
the z-direction for TE- and m-polarised light as 
a function of the angle of incidence Oi for the 
parameters in table 1. At a critical angle, 5 van- 
ishes and for higher angles becomes imaginary. 

4 the dependence of the effective wavevector component and the inverse penetration 
depth on the angle of incidence is shown for the parameters chosen in our numerical 
examples for both types of polarisation. The penetration depth always extends over at 
least several units of the superlattice. The normal modes of the electromagnetic field in 
this particular regime of K and CO, where the effective wavevector component in the z- 
direction is imaginary, are easily determined. They are of type a and the two-component 
amplitude vectors in the layers of type 1 are proportional to the eigenvector of the 
transfer matrix associated with the larger eigenvalue. In figure 5 ,  an example of a 
Brillouin spectrum is shown for this case. The parameters used are again those of table 
1 and the parallel component of the wavevector is lQZl = 2.359. For comparison, the 
spectral density S(Q,  CO, z )  introduced by Camley et a1 [5] is also displayed for z = 0, 
where it can be written as 

S(Q,  CO, z = 0 )  - [AY,' ) 2 ~ - 2 6 ( ~  - Q Q J )  (7. la) 

for the discrete modes. 

(7. lb)  

(0) (0) in the continuous regions. The amplitudes A = A 1- in the uppermost layer are deter- 
mined by the normalisation. The continuous modes are conveniently normalised with 
respect to the effective wavenumber [, which gives rise to the density of states factor in 
(7.lb). A remarkable difference between the spectral density at the surface and the 
Brillouin spectrum consists in the much steeper fall-off of the latter with increasing 
frequency. Furthermore, certain gap modes are not visible in the Brillouin spectrum. It 
seems to be difficult to explain this behaviour by simple arguments. 

Since the slope of the dispersion curve of the band modes as function of t usually 
vanishes at the Brillouin zone boundary, the density of state factor entering the spectral 
density as well as the scattering intensity has a singularity. This is, however, compensated 
by the normalisation of the elastic modes in a subtle way, which has its mathematical 
origin in the fact that at the zone boundary the transfer matrix has the single eigenvalue 
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1, which is not degenerate, if the off-diagonal element TI, does not vanish. If the latter 
occurs, i.e., if 

P: = P3 ( 7 4  
or 

exp(2a2h) = 1 (7.3) 
the density of state factor is no longer singular and crossings of band edges may take 
place. Such crossings have been found [5] and correspond to condition (7.2), i.e., they 
are situated in the SZ-Q plane at the intersections between the band edges and the 
straight line given by the equation 

8. Conclusions 

The theory of Brillouin scattering from layered dielectric elastic media has been for- 
mulated in the framework of the distorted-wave Born approximation. The resulting 
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general formula for the intensity of the scattered light has been applied to example 
systems, for which its evaluation seems to be particularly easy, namely to crossed 
polarised scattering of a finite dielectric superlattice on a totally reflecting substrate and 
of a semi-infinite dielectric superlattice under the condition of a finite penetration depth 
of the light. In this geometry, the shear horizontal elastic modes in the superlattices can 
be studied. Brillouin scattering experiments on these systems for various angles of 
incidence would be desirable to investigate their interesting spectral properties and 
enable a comparison with the present theory. 
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Appendix 

The transfer matrices used in the calculations of 9 6 are of the general form 

and the matrices M introduced in B 5 are given by 

(b, +b2)e(a2-ad' (b, - b2)e-(al+az)[ 

(b, -b2)e(al+az)[ (b, +b2)e(al-az)l 

The following identifications have to be made: 

for the incoming TE modes, 

a .  I = iqj j =  1 , 2  bl = E2ql b2 = E l q 2  bi = (&1/&2)bl (A4) 

for the outgoing TM modes, 
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x [ -i(K - Ko)a2(qj/K) + al a;.]. 

The amplitudes of the shear modes are defined analogously to (5.1) with iqj replaced by 
aj. The two-component vectors t are determined by the boundary conditions at the 
substrate interface and the reference amplitudes by the normalisation. For the incoming 
TE mode, we obtain 
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For the elastic modes below the substrate bulk threshold, we have 

and for the elastic modes in the continuous spectrum 
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